
Lecture 14 - Orbits
A Puzzle...

A particle of mass m is subject to a force F[t] = m ⅇ-b t. The initial position and speed are both zero. Find x[t].

Solution

Newton’s 2nd Law yield F[t] = m ⅇ-b t = m x
..
[t], or equivalently the differential equation

x
¨
[t] = ⅇ-b t (1)

Now we simply need to solve this equation subject to the constraints x[0] = 0 and x [0] = 0.

Solution 1: Knowing that the derivative of an exponential is an exponential, we can guess the form 

xguess[t] = C ⅇ-b t whose second derivative is x¨guess[t] = C b2 ⅇ-b t. Thus, to match Equation (1), we set C =
1
b2  to 

obtain the specific solution xguess[t] =
1
b2 ⅇ

-b t.

To this specific solution, we add the general solution to x¨general[t] = 0, which is given by xgeneral[t] = c1 t + c2 where 

c1 and c2 are arbitrary constants. The full solution is the sum of xguess[t] + xgeneral[t], namely,

x[t] =
1
b2 ⅇ

-b t + c1 t+ c2 (2)

Because this solution has two arbitrary constants, we know it is the most general solution possible for this second 

order differential equation. At this point, we can substitute in our initial conditions. Using the initial condition 

x[0] = 0 yields c2 = -
1
b2  while the initial condition x [0] = 0 implies that c1 =

1
b

. Therefore, the full solution is

x[t] =
1
b2 ⅇ

-b t +
t

b
-

1
b2 (3)

Solution 2: We can also directly integrate the differential Equation (1). Taking the first integral, 

x

[t] = -

1
b
ⅇ-b t + c3 (4)

where the initial condition x [0] = 0 implies that c3 =
1
b

,

x

[t] = -

1
b
ⅇ-b t +

1
b (5)

Taking another derivative, 

x[t] =
1
b2 ⅇ

-b t +
t

b
+ c4 (6)

where the initial condition x[0] = 0 yields c4 = -
1
b2

x[t] =
1
b2 ⅇ

-b t +
t

b
-

1
b2 (7)

which agrees with the above result. □ 

Gravity

Gravitational Force

The force of gravity is given by

Fgrav[r

] = -

G M m

r2 r


(8)
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where G = 6.67 × 10-11 m3

kg·s2  is the universal gravitational constant. Recall from Lecture 6 (Energy) that we can 

define a (scalar) potential for this force as

Vgrav[r

] = -∫∞

r


Fgrav[r
 '] · ⅆr

 '

= ∫r

∞

Fgrav[r
 '] · ⅆr

 '

= ∫r

∞
-

G M m

(r')2
r

 · (ⅆr ' r


)

= ∫r

∞
-

G M m

(r')2
ⅆr '

= 
G M m

r'

r
'=r


r
'=∞

= -
G M m

r

(9)

Note that this potential only depends on the magnitude r and not on the direction r. We have implicitly defined the 

reference point of this potential to be Vgrav[∞] = 0.

For example, consider the planet Earth (m = 6 × 1024 kg) orbiting around the much-more-massive Sun 

(M = 2 × 1030 kg). We typically model this system by assuming that the Earth revolves around the Sun, which 

stays exactly fixed in space. But the Sun must also feel a gravitational pull due to the Earth. So how great of an 

approximation is the "fixed Sun" hypothesis?

To start off, the acceleration felt by the Earth is m aEarth = -
G M m

r2 r
 or (by just considering the magnitudes of both 

sides)

aEarth =
G M

r2 = 6 × 10-3 m

s2 (10)

while the acceleration of the sun is 

aSun =
G m

r2 = 2 × 10-8 m

s2 (11)

Thus aSun

aEarth
=

m

M
≪ 1, so that it is reasonable to approximate the sun as a fixed point in space with aSun ≈ 0. (This is 

the same type of assumption we make when we through a ball against a wall and assume that the wall remains 

stationary.)

Near-Earth Limit: Gravitational Acceleration g

Throughout the course, we claimed that on Earth, Fgrav = -m g z
 which is a constant force pointing straight down 

towards the ground. Equation (8) shows that this is only an approximation. Let us find out how good of an approxi-

mation this is in our daily lives.

Example

In the limit where we are on Earth throwing a ball in the air, we expect that r ≈ RE = 6.4 × 106 m. Show that using 

Fgrav[z

] = -m g z

 where g = 9.8 m

s2  is a good approximation for gravity in this limit.

Solution

In this problem M = 6 × 1024 kg is the mass of the Earth and m is the mass of your ball. If we through a ball to a 

distance d ≪ RE = 6.4 × 106 m (a reasonable assumption unless you are a superhero), then the angle across the 

Earth spanned by this throw equals θ = d

RE

≪ 1 and we can approximate the gravitational force as pointing straight 

down in the z-direction. If we also assume the ball reaches a maximum height h where h ≪ RE, then we can Taylor 

expand the gravitational force 
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Fgrav[(RE + z) z

] = m -

G M

RE
2 +

2 G M

RE
3 z+O[z]2 z



= m-9.8 m
s2 + 3× 10-6 1

s2  z+O[z]2 z
 (12)

Therefore, we see that to a very good approximation, gravity provides a constant acceleration of magnitude 9.8 m
s2  

straight down. Keeping the first order term would not only make equations (for example, for 2D projectile motion) 

much more complicated, but to see a difference you would need to keep 7 digits of precision (and our approxima-

tion 9.8 m
s2  does not have that many digits of precision). □ 

Orbits

This week, we are starting a brand new topic: gravitational orbits! For this entire lecture, we will consider a mass 

m orbiting around a mass M fixed at the origin.

v


r


Mass M
(Fixed)

Mass m
(Orbiting)

θ

Central Force

Gravity has the special property that it points radially and its magnitude depends only on the distance from the 

source (i.e. it is spherically symmetric). Then the angular momentum of the mass m has the time derivative
ⅆL

ⅆt
=

ⅆ

ⅆt
[r

⨯ p]

=
ⅆr


ⅆt
⨯ p+ r


⨯

ⅆp

ⅆt

= r

⨯Fgrav

= 0

(13)

where in the second step we have used the fact that ⅆr


ⅆt
= v
 is parallel to p = m v

 and therefore the cross product is 

zero; in the final step we used the fact that Fgrav[r

] and r are parallel (since Fgrav points radially inward) and 

therefore their cross product is zero. Thus, the angular momentum of a particle subject only to gravity is a 

constant.

As a consequence of this fact, we will prove that a particle acting under a central force only moves in a plane. At 

time t = 0, the particle has position vector r0, velocity vector v0, and an angular momentum L0 = m r


0⨯v


0 (which 
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 particle  position  velocity  angular  (which

we assume to be non-zero). At any later time, the particle will be at a position r with velocity v, so that the con-

stant angular momentum vector will equal L0 = m r

⨯v
. One of the fundamental properties of the cross product is 

that r⨯v
 is perpendicular to r and v. Since r must be perpendicular to L0 at all times, r must be confined to the 

plane perpendicular to L0. Thus, a particle acting only under gravity moves in a plane.

In case you were not convinced by the previous argument, we can make it more rigorous as follows. Assume 

L0 = z
 points along the z-direction (disregarding its magnitude). Suppose for the sake of a contradiction that 

r

= a x


+ b y


+ c z

 with c ≠ 0. If v = d x

+ e y


+ f z

, then what must d and e be in  order that r⨯v
 points along the z-

direction? Using r⨯v

= (b f - c e) x


+ (c d - a f ) y


+ (a e - b d) z

 we see that d =
a f

c
 and e = b f

c
. But this would 

imply that r⨯v

= 0 and we assumed that the angular momentum is a non-zero vector. Therefore we must have 

c = 0. 

And not to beat a dead horse, but we could also prove that a particle acting under gravity moves in a plane spanned 

by r and v by noting that the force acts in this plane at time 0, implying that at a time ⅆ t both r and v will still be in 

this plane. The force will still act within this same plane, and this argument can be repeated indefinitely, proving 

that the particle will stay in within this plane.

Advanced Section: Equations of Motion

Advanced Section: Integrating the Equations of Motion

Initial Conditions

For a 1D 2nd order differential equation (such as m x
¨
= -k x), there are 2 arbitrary constants that need to be 

specified to determine the motion (for example, x and x  at time t = 0). For the 2D orbit problem, there are two 2nd 

order differential equations, and they will require 4 initial conditions to specify an orbit. For example, you could 

specify r, θ, r
 , and θ


 at t = 0. Alternatively, you could use r, θ, L, and E at t = 0; the latter is deemed more useful 

because L and E are constants.

The following Manipulate allows you to vary r and v and see how this changes the angular momentum L and the 

energy E of the system. Recall that these are given by

E =
1
2

m r
 2 + r2 θ

 2
-

G M m

r (40)

L = m r2 θ


(41)

You can drag the mass m (the black dot) and the vector v by clicking and dragging them with your mouse.
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velocity

r


v


r=1.41, θ=0.25π

L=0.8, E=-0.51

For example, if we rotate v around in a circle (but leave its magnitude unchanged), then E will be constant while L 

will change; L will reach its maximum value when v is perpendicular to r and L = 0 when v is parallel to r.

Advanced Section: Effective Potential

Advanced Section: Visualizing the Effective Potential

Orbits: Derivation

We want to solve the two equations of motion for a mass m orbiting a mass M fixed at the origin (assuming that 

m ≪ M, this is a reasonable assumption). The equations of motion are 

L = m r2 θ


(48)
E =

1
2

m r
 2 +

L2

2 m r2 + Vgrav[r] (49)

The word "solve" is a bit ambiguous, because we could either solve for θ[t] and r[t] in terms of time or for r[θ] to 

find the shape of the orbits instead disregarding the time dependence. We will focus on the latter.

Substituting in Vgrav[r] = -
G M m

r
, we can solve the energy relation for r 2 = 

ⅆr

ⅆt

2
 to obtain 


ⅆr

ⅆt

2
=

2
m
E-

L2

2 m r2 +
G M m

r
 (50)

Since we are trying to get r[θ], we will need to cancel out the time dependence. We do so by diving this equation 
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 trying  get  dependence.  by diving  equation

using the angular momentum relationship θ

=

ⅆθ

ⅆt
=

L

m r2  squared, 


ⅆr

ⅆt

2


ⅆθ

ⅆt

2 = 

m r2

L

2 2

m
E-

L2

2 m r2 +
G M m

r
 (51)

The left-hand side simplifies to  ⅆr

ⅆθ

2
 and we can rearrange terms to obtain


1
r2

ⅆr

ⅆθ

2
=

2 m E

L2 -
1
r2 +

2 G M m2

L2 r
(52)

With so many 1
r
 variables floating around, it is natural to change variables to y = 1

r
 to try and simplify things. 

Using ⅆy = -
1
r2 ⅆ r, 


ⅆy

ⅆθ

2
= -y2 +

2 G M m2

L2 y+
2 m E

L2 (53)

Completing the square on the right-hand side, 


ⅆy

ⅆθ

2
= -y-

G M m2

L2 
2
+ 

G M m2

L2 
2
+

2 m E

L2 (54)

Changing variables again to z = y -
G M m2

L2  and simplifying, 


ⅆz

ⅆθ

2
= -z2 + 

G M m2

L2 
2
1+ 2 E L2

G2 M2 m3 

≡ -z2 + B2
(55)

where we have defined 

B =
G M m2

L2 1+ 2 E L2

G2 M2 m3 
1/2

(56)

the solution to this differential equation is 

z = B Cos[θ- θ0] (57)

as can be easily verified (we could also solve for it by using separation of variables). It is customary to pick our 

axes so that θ0 = 0 (this just amount to rotating the final orbit), so we will drop θ0 from all further equations. Using 

our definitions z = y -
G M m2

L2 =
1
r
-

G M m2

L2  and B =
G M m2

L2 1 +
2 E L2

G2 M2 m3 
1/2

, we obtain the orbit equation

1
r
=

G M m2

L2 (1+ ϵ Cos[θ]) (58)

where we have defined the eccentricity ϵ of the orbit as 

ϵ ≡ 1+ 2 E L2

G2 M2 m3 
1/2

(59)

Orbits: The Result

We have just proved that a mass m orbiting a mass M fixed at the origin will behave as 

r[θ] =
L2

G M m2
1

1+ϵ Cos[θ] (60)

where ϵ is the eccentricity 

ϵ ≡ 1+ 2 E L2

G2 M2 m3 
1/2

(61)

(We have chosen our axes so that the point of closest approach occurs in the +x
 direction.) The two variables L 

and E are fixed by initial conditions, and together with an initial location r and θ at time t = 0, these 4 variables 

fully specify an orbit.

The following lecture will be dedicated solely towards understanding what these orbits look like. For now, we 

begin by visualizing the orbits.
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r


v


r=1.17, θ=0.54

L=0.52, E=-0.76

ϵ=0.77

Let’s look at some properties of this orbit. The point of closest approach occurs at θ = 0 and has a distance

rmin =
L2

G M m2
1

1+ϵ (62)

The furthest point from the origin reached during an orbit occurs is 

rmax =
L2

G M m2
1

1-ϵ
(ϵ < 1)

rmax = ∞ (ϵ ≥ 1)
(63)

where we have separated out the cases of closed orbits with ϵ < 1 (circular or elliptical orbits) from open orbits 

with ϵ ≥ 1 (parabolic or hyperbolic orbits). When ϵ < 1, rmax is achieved at θ = π. 

A Note about the Eccentricity

Proof of Conic Orbits

Mathematica Initialization
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